Improving the water efficiency of olive trees under proper agricultural interventions

Morianou G.1, Kourgialas N.1, Psarras G.1, Koubouris G.1, Sismani G.2, Pisinaras V.2, Arampatzis G.2

1Institute of Olive Tree, Subtropical Plants and Viticulture, Hellenic Agricultural Organization "DEMETER", 73100, Chania, Greece.
2Soil and water resources Institute, Hellenic Agricultural Organization "DEMETER", 57400, Sindo, Thessaloniki, Greece.

information: kourgialas@nagref.cha.gr

\textbf{1. Introduction}

The objectives of this work were to improve the water efficiency of tree crops and save water, in a pilot farm, in eastern Crete – Greece, under proper agricultural interventions. The study is a part of LIFE AGROCLIMAWATER project, which aims to develop a climate change adaptation strategy for agriculture and prepare the agricultural sector for adapting to climate change.

\textbf{2. Study Area}

The selected pilot farm represents the most typical crop in eastern Crete (olive trees). The pilot farm has been divided in two parts, the first one is used as a control part, while the other one as the demonstration part where the interventions are applied.

\textbf{3. Materials and Methods}

The interventions applied in order to improve water efficiency are:

\begin{itemize}
 \item a) reduction of water evaporation losses from soil surface through soil mulching and cover crops,
 \item b) reduction of transpiration water losses through proper pruning (and summer pruning) and application of kaolin,
 \item c) application of organic materials i.e. plant residue,
 \item d) reduction of deep percolation water and nutrient losses and
 \item e) irrigation according to the water crop needs.
\end{itemize}

In order to evaluate the results after the 1st year of implementation of proper agricultural practices for saving water, the following performance indicators were estimated for both the demonstration and the control plot:

- **Water Use Efficiency (WUE)** on a fruit yield basis
 \[WUE = \frac{Y}{I} \text{[kg m}^{-3}\text{]} \]
 \(Y = \) yield [kg/ha]
 \(I = \) Total water volume (Effective rainfall + Irrigation volume) [m3 / ha]

- **Economic Water Productivity (EWP)**
 \[EWP = \frac{PM \cdot Yoil}{I} \text{[€ m}^{-3}\text{]} \]
 \(PM = \) Price of marketable product (olive oil) [€/L]
 \(Yoil = Y \cdot \text{Oil content} \% \text{[L/ha]} \)
 \(I = \) Total water volume (Effective rainfall + Irrigation volume) [m3 / ha]

- **Water Footprint (WFblue)**
 \[WF_{\text{blue}} = \frac{IR}{Y} \text{[m}^{3}\text{tn}^{-1}\text{]} \]
 \(IR = \) annual irrigation records [m3 / ha]
 \(Y = \) yield [tn/ha]

\textbf{4. Results}

The results of this work show that the demonstration part has appreciable values of WUE, EWP and WFblue higher than the traditional part (control).

\begin{table}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
 & TRADITIONAL & & & DEMONSTRATION & \\
\hline
WUE & Yield & Total & WUE & Yield & Total \\
[kg 3 m-3] & [kg ha-1] & Water & [kg 3 m-3] & [kg ha-1] & Water \\
Volume [m3 ha-1] & & & Volume [m3 ha-1] & & Volume \\
\hline
2.41 & 5400.00 & 2236.49 & 3.40 & 6260.87 & 1842.55 \\
\hline
\end{tabular}
\end{table}

\begin{table}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
 & TRADITIONAL & & & DEMONSTRATION & \\
\hline
EWP & Yield & olive oil & Total & EWP & Yield & olive oil \\
[€ 3 m-3] & [kg ha-1] & [%] & Water & [€ 3 m-3] & [kg ha-1] & [%] & Water \\
Volume [m3 ha-1] & & & Volume [m3 ha-1] & & & Volume \\
\hline
2.50 & 5400.00 & 30.43 & 2236.49 & 3.90 & 6260.87 & 33.77 \\
\hline
\end{tabular}
\end{table}

\begin{table}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
 & TRADITIONAL & & & DEMONSTRATION & \\
\hline
WFblue & Yield & Irrigation & & WFblue & Yield & Irrigation \\
[m3 tn-1] & [tn ha-1] & Volume & & [m3 tn-1] & [tn ha-1] & Volume \\
\hline
295.65 & 5.40 & 1596.50 & & 192.08 & 6.26 & 1202.56 \\
\hline
\end{tabular}
\end{table}

\textbf{5. Conclusions}

After the 1st year of implementation of proper agricultural practices, positive trends in demonstration part as compared to the traditional one have been achieved.

The 1st implementation year results of performance indicators will be used as a baseline of the efficiency of agricultural practices applied in order to make comparisons with the 2nd and 3rd year of their implementation.

More years of agricultural interventions will show the improving of the management techniques on water use (increasing crop yield and saving water).